Fractional Crystallization

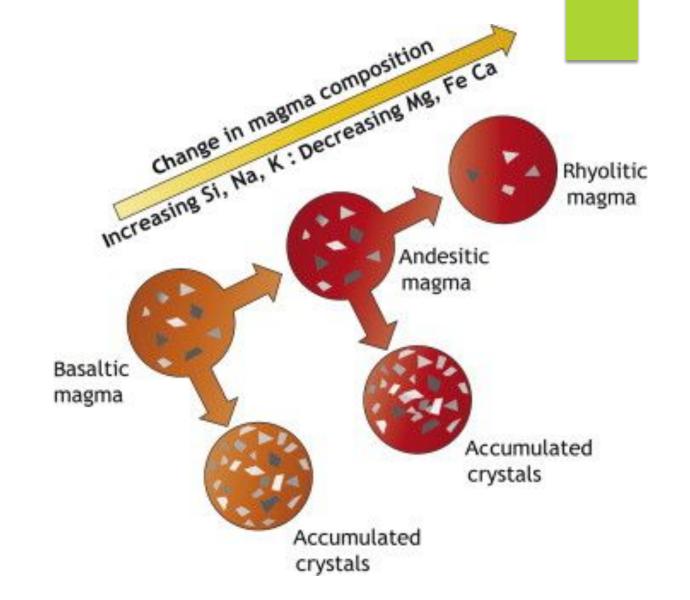
Inotice/I wonder

S-P Crater

Magma Types

- Ultramafic: mostly olivine and pyroxene, very high melting point, mantle material
- Mafic: high in iron, calcium, and magnesium, less olivine more amphibole than ultramafic, high melting point
- Intermediate: high in biotite mica and potassium feldspar, medium melting point
- Felsic: high in silica, potassium, and sodium, high in quartz, muscovite mica, and potassium feldspar, low melting point
- Questions:
 - How do you think magma changes from ultramafic magma from the mantle to felsic magma?
 - What patterns do you notice?

Fractional Crystallization


- As magma moves toward the surface, the temperature decreases allowing it to cool.
- Higher melting point minerals will crystallize out first and sink.
- Each time it cools, more minerals crystallize out.

Questions:

- What types of magmas have the higher melting points?
- Based on this, what types of minerals do you think would crystallize out first?

Changing Magma Composition

- As magma moves towards the surface, it has an increases in silica, sodium, and potassium and a decreases in magnesium, iron, and calcium.
- This allows for the formation of more intermediate and felsic magmas.

Why are There Sometimes Different Compositions Erupted at the Surface?

- Rate of Upwelling
 - Magmas can move quickly from extreme depths to the surface.
 - This process does not always allow time for minerals to crystalize out.
 - Therefore, when the rate of upwelling is fast, composition of the magma will not be impacted by fractional crystallization.
 - This allows for mafic to intermediate magmas to be produced.
- Pressure
 - As pressure decreases, melting increases resulting in less fractional crystallization.
 - This allows more mafic magmas to erupt at the surface, especially at mid-ocean ridges where pressure is low

References

Slide 2:

King, Hobart M. (2005). Basalt: What Is Basalt, How Does It Form, and How Is It Used? Geology.com, https://geology.com/rocks/basalt.shtml

King, Hobart M. (2005). Andesite. Geology.com, https://geology.com/rocks/andesite.shtml

King, Hobart M. (2005). Rhyolite: An extrusive igneous rock with a very high silica content. Geology.com, https://geology.com/rocks/rhyolite.shtml

Slide 3:

Anderson, Stephanie (2022). Photos of S-P Crater. Personal Collection.

Slide 6:

Rogers, Nich (2015). Chapter 4-The Composition and Origins of Magma. The Encyclopedia of Volcanoes (Second Edition), Academic Press, ISBN 9780123859389, https://www.sciencedirect.com/science/article/pii/B9780123859389000043